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High rn_scenario is an advanced scenario for fully non -inductive

operation with excellent compatibility of high confinement and fas
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U Intensive efforts were put in the
ITBregion 123, while the outer
core region (" ~[0.65,0.85]) has
not been systematically studied

Garofalo , NF, 2015
Staebler , POP, 2018
Jian, PRL, 2019 1/ 15



A coherent mode in the outer core region is observed
experimentally and correlated with fast ion confinement
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Experimental analysis shows the mode intensity peaks at z=0.75
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The mode is preliminarily identified to be an Beta Induced Alfven
Eigenmode(BAE) based on its frequency characteristics
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The outer core region is close to KBM boundary and may provide
substantial free energy from thermal background profiles
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[1] Staebler , PoP, 2018
[2] Pueschel,PoP, 2008
[3] Zonca , PPCF, 1996

U Pueshellll & Staebler 2
curve defines the
parameters set of
most unstable
KBM(kinetic ballooning
mode);

U KBM and BAE are well

coupled aslong as
— 18
A Free energy for BAE
excitation coming
from background
thermal profile can
be significant
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Flux-tube CGYRO calculation shows AE mode can be
robustly unstable in the presence of fast ions

0.2

0.07

—0.2

-0.4

—0.6
0.03

0.02}

0.01

Fast on

Fast off

Electron
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, EE———.
w(wa)
" lon direction
Y(wa)

1.0

0.5

0.0

—0.5

kyps = 0.06, fast on

=3.0 -15 0.0

0.15

0.10}

0.05}

Alm)

1.5

o(r,.a.u)

0'0(.'5).04 0.06 0.08 0.10 0.19'0960 =30 0

Kyps

AT SN

60

Frequency is AE
relevant;

Eigenfunction is
BAE:like
A rather than

doubled peaked
TAE structure
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The parametric dependence of BAE is very similar to
KBM, consistent with theoretical expectations
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U Parameter regimes
that favor KBM
destabilization also
facilitate the BAE
excitation

U The question is about
which one comes
first
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AE mode is driven before KBM under experimental

conditions
02 Ee— U BAE mode is excited (and
Y ——ky»,=02 | kinetic profiles can be relaxed )
3 02 - before touching KBM
. - A Consistent with absence of

KBM under experiments

U Experimental condition is close

01} AE | 3_/ -KBM . to KBM threshold
I A Consistent with excitation of
BAE under low fast ion
population
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A e i BAE) < 3Exp) < 3¢ .(KBM) Role of BAE in transport”

Nonlinear simulation is required.
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Nonlinear CGYRO simulation on the AE -only wavelength predicts
the mode peaks at n=3~4, consistent with experiments

U Well Saturated State:

U Peaks at n=3~4
A Consistent with
experiments
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